public class TableDiscreteFunction extends FuzzyAlgorithm
Learn more
The example demonstrates a typical usage of the class.
String indexFolder = "c:\\MyIndex\\";
String documentsFolder = "c:\\MyDocuments\\";
String query = "Einstein";
Index index = new Index(indexFolder); // Creating an index in the specified folder
index.add(documentsFolder); // Indexing documents from the specified folder
SearchOptions options = new SearchOptions();
options.getFuzzySearch().setEnabled(true); // Enabling the fuzzy search
options.getFuzzySearch().setFuzzyAlgorithm(new TableDiscreteFunction(1, new Step(5, 2), new Step(8, 3))); // Creating the fuzzy search algorithm
// This function specifies 1 as the maximum number of mistakes for words from 1 to 4 characters.
// It specifies 2 as the maximum number of mistakes for words from 5 to 7 characters.
// It specifies 3 as the maximum number of mistakes for words from 8 and more characters.
SearchResult result = index.search(query, options); // Search in index
Constructor and Description |
---|
TableDiscreteFunction(int offsetOfInputs,
int[] tableOfOutputs)
Initializes a new instance of the
TableDiscreteFunction class. |
TableDiscreteFunction(int firstStepLevel,
Step... steps)
Initializes a new instance of the
TableDiscreteFunction class. |
Modifier and Type | Method and Description |
---|---|
protected static int |
getByteCount(TableDiscreteFunction algorithm) |
int |
getMaxMistakeCount(int termLength)
Gets a maximum allowed number of mistakes for specified term length.
|
double |
getSimilarityLevel(int termLength)
Gets a similarity level for specified term length.
|
protected static void |
toByteArray(TableDiscreteFunction algorithm,
ArrayWriter writer) |
createProtected
public TableDiscreteFunction(int offsetOfInputs, int[] tableOfOutputs)
TableDiscreteFunction
class.offsetOfInputs
- The offset of the table indeces relative to the input values.tableOfOutputs
- The table of output values.public TableDiscreteFunction(int firstStepLevel, Step... steps)
TableDiscreteFunction
class.firstStepLevel
- The level of the first step of the step function.steps
- The next steps of the step function.public double getSimilarityLevel(int termLength)
getSimilarityLevel
in class FuzzyAlgorithm
termLength
- The term length.public int getMaxMistakeCount(int termLength)
getMaxMistakeCount
in class FuzzyAlgorithm
termLength
- The term length.protected static int getByteCount(TableDiscreteFunction algorithm)
protected static void toByteArray(TableDiscreteFunction algorithm, ArrayWriter writer)