com.groupdocs.search.options

Class TableDiscreteFunction



  • public class TableDiscreteFunction
    extends FuzzyAlgorithm
    Represents the fuzzy search algorithm that contains correspondences between word lengths and the number of allowed mistakes. This algorithm can be specified by a table of output values or by a step function.

    Learn more

    The example demonstrates a typical usage of the class.

     
     String indexFolder = "c:\\MyIndex\\";
     String documentsFolder = "c:\\MyDocuments\\";
     String query = "Einstein";
     Index index = new Index(indexFolder); // Creating an index in the specified folder
     index.add(documentsFolder); // Indexing documents from the specified folder
     SearchOptions options = new SearchOptions();
     options.getFuzzySearch().setEnabled(true); // Enabling the fuzzy search
     options.getFuzzySearch().setFuzzyAlgorithm(new TableDiscreteFunction(1, new Step(5, 2), new Step(8, 3))); // Creating the fuzzy search algorithm
     // This function specifies 1 as the maximum number of mistakes for words from 1 to 4 characters.
     // It specifies 2 as the maximum number of mistakes for words from 5 to 7 characters.
     // It specifies 3 as the maximum number of mistakes for words from 8 and more characters.
     SearchResult result = index.search(query, options); // Search in index
     
     
    • Constructor Detail

      • TableDiscreteFunction

        public TableDiscreteFunction(int offsetOfInputs,
                                     int[] tableOfOutputs)
        Initializes a new instance of the TableDiscreteFunction class.
        Parameters:
        offsetOfInputs - The offset of the table indeces relative to the input values.
        tableOfOutputs - The table of output values.
      • TableDiscreteFunction

        public TableDiscreteFunction(int firstStepLevel,
                                     Step... steps)
        Initializes a new instance of the TableDiscreteFunction class.
        Parameters:
        firstStepLevel - The level of the first step of the step function.
        steps - The next steps of the step function.
    • Method Detail

      • getSimilarityLevel

        public double getSimilarityLevel(int termLength)
        Gets a similarity level for specified term length.
        Specified by:
        getSimilarityLevel in class FuzzyAlgorithm
        Parameters:
        termLength - The term length.
        Returns:
        A similarity level.
      • getMaxMistakeCount

        public int getMaxMistakeCount(int termLength)
        Gets a maximum allowed number of mistakes for specified term length.
        Specified by:
        getMaxMistakeCount in class FuzzyAlgorithm
        Parameters:
        termLength - The term length.
        Returns:
        A maximum allowed number of mistakes.